AMERICAN KENNEL CLUB

REGISTRATION CERTIFICATE

NAME GOLDEN STAR SUNNY KONA

BREED GOLDEN RETRIEVER COLOR GOLDEN SIRE OLIVER KIDD

SS09929707 05-20 (AKC DNA #V927031)

GOLDEN STAR SANDY ECHO SR84302407 02-16 BREEDER OWEN YODER

OWNER

Preserver and a contract and a contr

EN INTERNICA STATEMENT

OWEN YODER 2349 OLD BEN BOW RD UNION GROVE NC 28689-9072 NUMBER SS21142703

SEX FEMALE DATE OF BIRTH SEPTEMBER 4, 2020

CERTIFICATE ISSUED FEBRUARY 1, 2021 This certificate invalidates all previous certificates issued.

If a date appears after the name and number of the sire and dam, it indicates the issue of the Stud Book Register in which the sire or dam is published.

For Transfer Instructions, see back of Certificate.

This Certificate issued with the right to correct or revoke by the American Kennel Club.

AMERICAN KENNEL CLUB , FOUNDED 1884 Certified Pedigree AMOS MOSES OF GOLDSTRIKE SR69649709 (07-13) OFA24E OFEL24 CHIC93331 DK GLDN AKC DNA #V705980 RUGER M-ONE OF GOLDSTRIKE CGC TKN SR86518307 (01-17) OFA24E OFEL24 STEEP HILL'S REMINGTON OF GOLDSTRIKE CHIC120089 DK GLDN AKC DNA #V795758 SR40320801 (02-10) OFA43E OFEL43 CHIC67790 DK GLDN MK'S KAYLEE'S KNIGHT OF MAXWELL JH SR96653705 (04-19) OFA29E OFEL27 SPORTIN' NITTY GRITTY MH SR27605801 (06-08) OFA24G OFEL24 CHIC45001 GLDN AKC DNA #V484507 CHIC138412 GLDN AKC DNA MK'S NITTY GRITTY HANNAH #V10006653 SR70317801 (10-14) OFA28G OFEL24 DK MK'S ANNIE'S JESSICA SR47991801 (12-10) OFA24G OFEL24 CHIC64024 DK GLDN GLDN **OLIVER KIDD** SS09929707 (05-20) DK GLDN AKC DNA Sire CH MERRYGOLD O SAY CAN YOU SEE SR09755905 (01-06) OFA25G OFEL25 GLDN AKC DNA #V392078 #V927031 MERRYGOLD JUST A TRAVELLIN' MAN SR45745303 (05-10) OFA24G OFEL25 GLDN CH KANDILAND'S TIMEBOMB@MGG SR09913202 (07-06) OFA24E OFEL24 CHIC22227 GLDN AKC DNA #V576867 TRAVELLIN' MILES TO BAILEY ANN SR76202005 (11-16) OFA30G OFEL30 LT SHENANIGAN JACK O'MALLEY SN67575308 (09-04) OFA52F GLDN GLDN CRUZIN' MILES OF HIGHWAY SR45890109 (10-10) OFA24G OFEL24 DK **GOLDEN STAR SUNNY KONA** GI DN FRANKLIN'S GOLD PRECIOUS SR01755707 (11-03) OFA29G OFEL29 GLDN SS21142703 GOLDEN RETRIEVER FEMALE GLDN Date Whelped: 09/04/2020 DONOVAN CASIMIRE BUDDY SR02079309 (03-04) GLDN AKC DNA #V466680 Breeder: OWEN YODER SIR MAJI THE GREAT SR31395706 (09-07) LT GLDN AKC DNA #V543034 MICOL ANIKA CUDDLES SR02340102 (03-04) LT GLDN HILLSIDES SIR MILTON SR65020610 (03-12) LT GLDN AKC DNA #V662146 CASLAND'S LIBERTY STARR SR04508605 (01-04) LT GLDN AKC DNA #V333775 TIFFANY'S PLEASANT BLOND SR18737310 (05-08) LT GLDN TIFFANY BOW TIE SR00277207 (12-03) GLDN **GOLDEN STAR SANDY ECHO** Dam SR84302407 (02-16) GLDN SIR MAJI THE GREAT SR31395706 (09-07) LT GLDN AKC DNA #V543034 SIR HANS IV SR51706207 (01-10) GLDN AKC DNA #V590432 TIFFANY'S PLEASANT BLOND SR18737310 (05-08) LT GLDN TIMBERSIDE'S SUPER SHERI SR69287004 (05-14) GLDN A GOLDEN RUSH OF MORNING SN79500801 (05-02) GLDN AKC DNA #V246218 TIMBERSIDE'S DEBBIE DOO-DINKLE SR27013409 (07-07) GLDN MOLLY MONIQUE II AMERICAN SR15533608 (03-06) DK GLDN **KENNEL CLUB®**

The Seal of The American Kennel Club affixed hereto certifies that this pedigree was compiled from official Stud Book records on March 4, 2024.

THE AMERICAN KENNEL CLUB

Research Pedigree - 5 Generation Golden Star Sunny Kona

Name: Golden Star Sunny Kona AKC #: SS211427/03 02-22 Birth Date: 09/04/2020 Colors/Markings: Golden Breeder(s): Owen Yoder

Breed/Variety: Golden Retriever Sex: Female

Golden

Golden

"Jakota Lee-Wrigley's Light" SN771793/04 12-01

Franklin's Gold Precious SR017557/07 11-03

Golden OFA29G OFEL29

Golden Star Sunny Oliver Kidd SS099297/07 05-20 FC AFC OTCH Tnt's Stanley Steamer SS211427/03 02-22 Dark Golden AKC DNA #V927031 SN841087/01 05-04 Golden Amos Moses Of Goldstrike SR696497/09 07-13 Golden None OFEL AKC DNA #V267290 Dark Golden None OFEL AKC DNA #V705980 Porjay's Black Eyed Pea JH SR500113/07 05-11 Ruger M-One Of Goldstrike CGC Dark Golden TKN SR865183/07 01-17 OFA24G OFEL24 Dark Golden OFA24E OFEL24 AKC DNA FC AFC Steeple Hill Ranger SN717935/06 08-05 #V795758 Dark Golden OFA34G OFEL36 AKC DNA #V341116 Steep Hill's Remington Of Goldstrike SR403208/01 02-10 Dark Golden OFA43E OFEL43 Jacos' Lady Sings The Blues SR044787/04 05-07 <u>Mk's Kaylee's Knight Of Maxwell</u> JH SR966537/05 04-19 Dark Golden OFA26G OFEL26 Golden OFA29E OFEL27 AKC DNA Sportin' Gold Standard MH SN172860/01 07-97 #V10006653 Sportin' Nitty Gritty MH SR276058/01 06-08 Golden AKC DNA #V141814 Golden OFA24G OFEL24 AKC DNA #V484507 Sungold Pica Pica SN912233/04 10-05 Mk<u>'s Nitty Gritty Hannah</u> Golden SR703178/01 10-14 Dark Golden Mk's Benelli SN915887/02 09-04 OFA28G OFEL24 Dark Golden OFA27G AKC DNA #V386740 Mk's Annie's Jessica SR479918/01 12-10 Dark Golden Mk's Annie May SN687485/04 04-02 OFA24G OFEL24 Golden OFA24F Travellin' Miles To Bailey Ann SR762020/05 11-16 CH Faera's Starlight SN709623/01 07-01 Light Golden Golden CH Merrygold O Say Can You See SR097559/05 01-06 None OFEL AKC DNA #V160046 OFA30G OFEL30 Golden OFA25G OFEL25 AKC DNA CH Kandiland She's My Rite #V392078 Handman SN664427/04 01-03 Merrygold Just A Travellin' Man SR457453/03 05-10 Golden None OFEL Golden OFA24G OFEL25 AKC DNA CH Gorca's Maximus Gladiator SN777814/07 08-02 #V576867 Golden OFA24G AKC DNA #V216395 CH Kandiland's Timebomb@Mgg SR099132/02 07-06 Golden OFA24E OFEL24 CH Kandiland's All The Rite Stuf SN664427/01 12-02 Golden OFA24G OFEL24 Cruzin' Miles Of Highway SR458901/09 10-10 Shenanigan's Ralley O'Malley JH SM904238/01 12-99 Dark Golden Golden Shenanigan Jack O'Malley SN675753/08 09-04 OFA24G OFEL24 OFA46G Golden OFA52F Malagold Tiramisu Shenanigan SN275847/02 04-99

				Shelby Lane III SN311733/02 12-01 Dark Golden
	Hillsides Sir Milton SR650206/10 03-12 Light Golden AKC DNA #V662146	Sir Maji The Great SR313957/06 09-07 Light Golden AKC DNA #V543034	Donovan Casimire Buddy SR020793/09 03-04 Golden AKC DNA #V466680	Bo's Golden Sabastian SN765257/01 06-02 Light Golden AKC DNA #V219759
				Raber Acres Starla SN795883/01 09-02 Light Golden
			Micol Anika Cuddles SR023401/02 03-04 Light Golden	Mizers Luster Jake SN410916/02 12-98 Light Golden
				Duchess Ann Marie SN426058/07 05-99 Light Golden
		Tiffany's Pleasant Blond SR187373/10 05-08 Light Golden	Casland's Liberty Starr SR045086/05 01-04 Light Golden AKC DNA #V333775	CH Molega's Hot Honey Bear SN119462/05 06-97 Golden OFA28G AKC DNA #V259824
				Summerset Honey Bear's Holly SN229807/05 06-97 Golden
<u>Golden Star Sandy</u>			Tiffany Bow Tie SR002772/07 12-03 Golden	Double B's Tiller SN516889/01 01-00 Dark Golden OFA24G AKC DNA #V162553
				<u>Ty My Bow</u> SN692672/03 05-02 Golden
Echo SR843024/07 02-16 Golden	<u>Timberside's Super Sheri</u> SR692870/04 05-14 Golden	Sir Hans IV SR517062/07 01-10 Golden AKC DNA #V590432	Sir Maji The Great SR313957/06 09-07 Light Golden AKC DNA #V543034	Donovan Casimire Buddy SR020793/09 03-04 Golden AKC DNA #V466680
				Micol Anika Cuddles SR023401/02 03-04 Light Golden
SR692870/04 05-14			<mark>Tiffany's Pleasant Blond</mark> SR187373/10 05-08 Light Golden	Casland's Liberty Starr SR045086/05 01-04 Light Golden AKC DNA #V333775
				Tiffany Bow Tie SR002772/07 12-03 Golden
		Timberside's Debbie Doo-Dinkle SR270134/09 07-07 Golden	A Golden Rush Of Morning SN795008/01 05-02 Golden AKC DNA #V246218	Rushing Wind Hartley Manor SN394388/07 11-98 Light Golden AKC DNA #V279922
				Tambries Hollywood SN239842/03 11-98 Dark Golden
			Molly Monique II SR155336/08 03-06	Sir George Ellet SN421230/04 07-99 Golden AKC DNA #V166608
		Dark Golden	Heidi Ann IV SN690755/04 07-01 Golden	

2024 American Kennel Club

© 2024 All rights reserved. No material may be reproduced in any manner whatsoever without written permission from The American Kennel Club, Inc. The AKC has made every effort to insure the accuracy of its information. The information provided is "as is" with all faults and without warranty of any kind, expressed or implied. In no event shall American Kennel Club be liable for any incidental or consequential damages, lost profits, or any indirect damages even if AKC has been informed of the possibility thereof.

Test Date: October 24th, 2021

Rembark

embk.me/kona2008

GENETIC STATS

Predicted adult weight: **59 lbs** Genetic age: **18 human years** Based on the date of birth you provided

TEST DETAILS

Kit number: EM-23497090 Swab number: 31210152411114

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6). Test Date: October 24th, 2021

embk.me/kona2008

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

RELATED BREEDS

Flat-Coated Retriever Sibling breed

Labrador Retriever Sibling breed

Chesapeake Bay Retriever Cousin breed

Newfoundland Cousin breed

MATERNAL LINE

Through Kona's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

embk.me/kona2008

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^{y} may be brindle rather than black or brown. No dark hairs anywhere (ee)

Not expressed (K^BK^B)

RESULT

Rembark

embk.me/kona2008

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Not expressed (a^ta)

D Locus (MLPH)

The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Not expressed (DD)

Test Date: October 24th, 2021

Rembark

embk.me/kona2008

Likely black colored

nose/feet (BB)

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Cocoa (HPS3)

Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin.No co alleles, notDogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies.expressed (NN)Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brownthan dogs that have the Bbb or BB genotypes at the B locus.

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Rembark

RESULT

embk.me/kona2008

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an **M*M*** result are likely to be phenotypically merle alleles and are unlikely to be phenotypically merle or double merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A) LINKAGE

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Likely no impact on

coat pattern (rr)

embk.me/kona2008

Likely unfurnished (no

and/or eyebrows) (II)

mustache, beard,

RESULT

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2) LINKAGE

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Coat Length (FGF5)

The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the **T** allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral **G** allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are
heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus
and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2
(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.Likely heavy/seasonal
shedding (CT)

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Hairlessness (SGK3)	
	١
Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the ND	ł

genotype are likely to be hairless while dogs with the NN genotype are likely to have a normal coat.

Very unlikely to be hairless (NN)

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

embk.me/kona2008

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely normal-length tail (CC)

Unlikely to have hind dew claws (CC)

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Rembark

DNA Test Report	Test Date: October 24th, 2021	embk.me/kona2008
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size.		
Body Size (GHR - E191K)		Intermediate (GA)
The A allele is associated with smaller body size.		internetiate (GA)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		Luger (00)

Test Date: October 24th, 2021

embk.me/kona2008

RESULT

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation (EPAS1)

This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those	Normal altitude tolerance (GG)	
found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This		
mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.		

Appetite (POMC) LINKAGE

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (**NN**), dogs with one (**ND**) or two (**DD**) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

Normal food motivation (NN)

CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

Kona's baseline ALT level may be Low Normal

Why is this important to your vet?

Kona has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Kona has this genotype, as ALT is often used as an indicator of liver health and Kona is likely to have a lower than average resting ALT activity. As such, an increase in Kona's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Test Date: October 24th, 2021

embk.me/kona2008

HEALTH REPORT

How to interpret Kona's genetic health results:

If Kona inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Kona for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Good news!

Kona is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions	10 variants not detected	
Additional Genetic Conditions	199 variants not detected	

Test Date: October 24th, 2021

embk.me/kona2008

BREED-RELEVANT CONDITIONS TESTED

Kona did not have the variants that we tested for, that are relevant to her breed:

- Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- 🔇 Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- C Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- 🔀 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)
- 🔀 Degenerative Myelopathy, DM (SOD1A)
- 🚫 Muscular Dystrophy (DMD, Golden Retriever Variant)
- Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)
- 🔀 Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)
- 💽 Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)
- 😴 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1, Golden Retriever Variant)

ADDITIONAL CONDITIONS TESTED

Kona did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Kona's breed may not yet be known.

- MDR1 Drug Sensitivity (ABCB1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- 🔀 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 🌄 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- 🔀 Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- 🌄 Factor VIII Deficiency, Hemophilia A (F8 Exon 11, German Shepherd Variant 1)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 1, German Shepherd Variant 2)
- 🔀 Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- 💽 Thrombopathia (RASGRP1 Exon 8, Landseer Variant)
- C Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- 😴 Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)
- 🌄 Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)
- 💽 Von Willebrand Disease Type I, Type I vWD (VWF)
- 🌄 Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)
- 🔀 Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)
- 😴 Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)
- 😴 Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- 🔀 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)
- 🔀 May-Hegglin Anomaly (MYH9)
- Prekallikrein Deficiency (KLKB1 Exon 8)

KONA

DNA Test Report

ADDITIONAL CONDITIONS TESTED

- 💎 Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)
- 💽 Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)
- Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)
- 🔀 Trapped Neutrophil Syndrome, TNS (VPS13B)
- 🔀 Ligneous Membranitis, LM (PLG)
- 🛃 Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)
- 🔿 Methemoglobinemia (CYB5R3)
- 🔀 Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- 🔇 Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)
- 🔀 Complement 3 Deficiency, C3 Deficiency (C3)
- 😴 Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)
- 😴 Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)
- 😴 X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)
- 🔀 X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)
- Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)
- Progressive Retinal Atrophy, rcd3 (PDE6A)
- 💎 Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- 📀 Progressive Retinal Atrophy, PRA1 (CNGB1)
- Progressive Retinal Atrophy (SAG)
- 📀 Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)
- Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)
- 🔇 X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
- 🔽 Progressive Retinal Atrophy, PRA3 (FAM161A)
- 🔇 Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- 🔀 Day blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6, German Shorthaired Pointer Variant)

KONA

DNA Test Report

ADDITIONAL CONDITIONS TESTED

- 🔀 Achromatopsia (CNGA3 Exon 7, German Shepherd Variant)
- 💽 Achromatopsia (CNGA3 Exon 7, Labrador Retriever Variant)
- 🔀 Autosomal Dominant Progressive Retinal Atrophy (RHO)
- 💽 Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)
- 🔀 Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)
- 🔀 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- 💽 Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)
- 🔇 Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)
- 😴 Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)
- 📀 Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)
- 🔇 Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)
- 장 Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9, Australian Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- 🜄 Congenital Stationary Night Blindness (RPE65, Briard Variant)
- 🔇 Congenital Stationary Night Blindness (LRIT3, Beagle Variant)
- 🔀 Macular Corneal Dystrophy, MCD (CHST6)
- 🔇 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- Cystinuria Type I-A (SLC3A1, Newfoundland Variant)
- 😴 Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)
- 🔀 Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)
- 🔇 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- 📀 Polycystic Kidney Disease, PKD (PKD1)
- 🔇 Primary Hyperoxaluria (AGXT)
- 🔀 Protein Losing Nephropathy, PLN (NPHS1)
- 🌄 X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)

ADDITIONAL CONDITIONS TESTED

- 💎 Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3, Cocker Spaniel Variant)
- 💎 Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)
- 💽 🛛 Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)
- 🏹 Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- 🌄 X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED (EDA Intron 8)
- 🌄 Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7)
- 🔀 Canine Fucosidosis (FUCA1)
- 🏹 Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- 🔽 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)
- 😴 Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)
- 🍼 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)
- 🔇 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)
- 🍼 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)
- 🍼 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)
- 🏹 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant)
- 🌄 Lagotto Storage Disease (ATG4D)
- 🚫 Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)
- 🚫 Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)
- 🍼 Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)
- 🌄 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)
- 🚫 Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)
- 🚫 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)
- 🔀 Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)
- 🌄 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)

ADDITIONAL CONDITIONS TESTED

- 💎 Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)
- 🗙 Adult-Onset Neuronal Ceroid Lipofuscinosis, NCL A, NCL 12 (ATP13A2, Tibetan Terrier Variant)
- 🔀 Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)
- 🌄 🛛 GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)
- 🌄 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)
- 🌄 GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)
- 🔀 GM2 Gangliosidosis (HEXB, Poodle Variant)
- 💽 GM2 Gangliosidosis (HEXA, Japanese Chin Variant)
- 🔀 Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)
- 🍼 🛛 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)
- 🏷 🛛 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)
- Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- 🔇 Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)
- 🜄 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- 🚫 Neonatal Interstitial Lung Disease (LAMP3)
- 🛃 Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- 🔀 Alexander Disease (GFAP)
- 🌄 Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2, Beagle Variant)
- 🍼 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)
- 💽 Cerebellar Hypoplasia (VLDLR, Eurasier Variant)
- 🚫 Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- 🔇 Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)
- 🍼 Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)
- 🔇 🛿 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 🏹 Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)

Test Date: October 24th, 2021

DNA Test Report

ADDITIONAL CONDITIONS TESTED

- Hypomyelination and Tremors (FNIP2, Weimaraner Variant)
- Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP1, English Springer Spaniel Variant)
- Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)
- Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)
- L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- Polyneuropathy, AMPN (NDRG1 SNP, Alaskan Malamute Variant)
- Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)
- Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)
- Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15, Kerry Blue Terrier Variant)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4, Chinese Crested Variant)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
- Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS, Spaniel and Pointer Variant)
- Sensory Neuropathy (FAM134B, Border Collie Variant)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- Juvenile Myoclonic Epilepsy (DIRAS1)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)
- Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)
- Long QT Syndrome (KCNQ1)
- Cardiomyopathy and Juvenile Mortality (YARS2)
- Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)

Fembark

embk.me/kona2008

ADDITIONAL CONDITIONS TESTED

- Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- 🌄 Ulrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)
- Centronuclear Myopathy (PTPLA)
- 🔀 Exercise-Induced Collapse (DNM1)
- Inherited Myopathy of Great Danes (BIN1)
- 🚫 Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- 🛃 Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)
- 💽 Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)
- 😴 Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Retriever Variant)
- 🚫 Inflammatory Myopathy (SLC25A12)
- 🔇 Hypocatalasia, Acatalasemia (CAT)
- Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)
- 🚫 Malignant Hyperthermia (RYR1)
- 🌄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)
- 🌄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)
- 😴 Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)
- 🔀 Lundehund Syndrome (LEPREL1)
- 😴 Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)
- Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)
- 🔇 Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)
- 🔀 Myasthenia Gravis Like Syndrome (CHRNE, Heideterrier Variant)
- C Episodic Falling Syndrome (BCAN)
- 🔀 🛛 Paroxysmal Dyskinesia, PxD (PGIN)
- Demyelinating Polyneuropathy (SBF2/MTRM13)
- 🛃 Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)

ADDITIONAL CONDITIONS TESTED

- 😴 Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)
- 💽 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)
- C Ichthyosis (SLC27A4, Great Dane Variant)
- 💽 Ichthyosis (NIPAL4, American Bulldog Variant)
- 🏷 🛛 Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)
- 🌄 Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)
- 🔀 Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)
- 🔀 Hereditary Nasal Parakeratosis, HNPK (SUV39H2)
- 🚫 Musladin-Lueke Syndrome, MLS (ADAMTSL2)
- 🔇 Oculocutaneous Albinism, OCA (SLC45A2, Pekingese Variant)
- 🔀 Bald Thigh Syndrome (IGFBP5)
- 🔀 Lethal Acrodermatitis, LAD (MKLN1)
- 💽 Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)
- 🜄 Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)
- 💎 Hereditary Vitamin D-Resistant Rickets (VDR)
- 🍼 🛛 Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 (COL9A2, Samoyed Variant)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2, Beagle Variant)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1, Dachshund Variant)
- 🚫 Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1, Poodle Variant)
- 🚫 Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)
- Craniomandibular Osteopathy, CMO (SLC37A2)
- 🔀 Raine Syndrome, Canine Dental Hypomineralization Syndrome (FAM20C)
- 🏷 Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene CFA12)
- 🔀 Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)

Fembark

Rembark

embk.me/kona2008

RESULT

INBREEDING AND DIVERSITY

CATEGORY

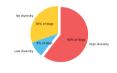
Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1


DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

16%

Vour Deg/s COI: 16%

High Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

